Theoretical detection limits of magnetic biobarcode sensors and the phase space of nanobiosensing.

نویسندگان

  • Pradeep R Nair
  • Muhammad A Alam
چکیده

A scaling theory of the sub atto-molar (aM) detection limits of magnetic particle (MP) based biosensors (e.g., bio-barcode assays) is developed and discussed. Despite the dramatic differences of sensing protocols and detection limits, the MP-based sensors can be interpreted within the same theoretical framework as any other classical biosensor (e.g., nanowire sensors), except that these sensors are differentiated by the geometry of diffusion and the probe (ρ(MP))/target (ρ(T)) density ratio. Our model predicts two regimes for biomolecule detection: For classical biosensors with ρ(MP) ≤ ρ(T), the response time t(s) proportional to 1/ρ(T); while for MP-based biosensors with ρ(MP) > ρ(T), t(s) proportional to 1/ρ(MP). The theory (i) explains the performance improvement of MP-sensors by ρ(MP)/ρ(T) (order of 10(3)-10(6)), broadly validating the sub-aM detection limits reported in literature, (ii) offers intuitive interpretation for the counter-intuitive ρ(T)-independence of detection time in MP-sensors, (iii) shows that statistical fluctuations should reduce with ρ(T) for MP sensors, and (iv) offers obvious routes to sensitivity improvement of classical sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Solid Phase Extraction of Triazine Herbicides from Environmental Aquatic Media using Polyaniline/ Fe3O4 Nanocomposite

Polyaniline/Fe3 O4 magnetic nanoparticles were synthesized and employed as a sorbent for the magnetic solid phase extraction (MSPE) of seven triazine herbicides from environmental water samples. The properties of the prepared magnetic sorbent were characterized using field emission-scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetome...

متن کامل

Synthesis and application of a novel magnetic nanocomposite for determination of trace Cd(II) in water samples

In this work for the first time, Fe3O4@SiO2 core-shell nanoparticles functionalized with isatin groups as a magnetic nanosorbent was applied for the simultaneous extraction of trace amounts of cadmium (II). The characterization of this nanosorbentwas studied using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The effect of seve...

متن کامل

Analysis of Magnetic Flux Linkage Distribution in Salient-Pole Synchronous Generator with Different Kinds of Inter-Turn Winding Faults

A reliable and accurate diagnosis of inter-turn short circuit faults is a challenging problem in the area of fault diagnosis of electrical machines. The purpose of this challenge is to be more efficient in fault detection and to provide a reliable method with low-cost sensors and simple numerical algorithms which not only detect the occurrence of the fault, but also locate its position in the w...

متن کامل

Solid Phase Extraction Using Modified Magnetic Iron Oxide Nanoparticles for Extraction and Spectrofluorimetric Determination of Carvedilol in Human Plasma Samples

A new analytical approach was developed involving magnetic solid–phase extraction and spectrofluorimetric determination of carvedilol in human plasma samples. A plasma sample was prepared and adjusted to pH 8.2–10, then carvedilol was quickly extracted using iron oxide magnetic nanoparticles modified by the surfactant cetyltrimethylammonium bromide and determined to apply spectrofluorimetry...

متن کامل

Silica -magnetic inorganic hybrid nanomaterials as versatile sensing platform

Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 135 11  شماره 

صفحات  -

تاریخ انتشار 2010